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A fractal model enabling one to predict the parameters of the supermolecular structure of network polymers
based on the cross-link density has been proposed. A cluster model of the amorphous state of polymers has
been employed for quantitative description. Good agreement between theory and experiment has been ob-
tained.

As is well known [1–3], computer modeling of the processes of formation of network polymers has suggested
that at the gelation point, the cross-linked skeletons of these polymers are fractal structures; an increase in the cross-
link density νc leads to an increase in the fractal dimension of such a skeleton. However the latter parameter is not
very convenient from the practical viewpoint, although one prefers to characterize glassy network polymers at present
precisely with the quantity νc [4]. Nonetheless, it has been shown in [5] that one can obtain different properties, for
example, different values of the glass-transition temperature, for one and the same network polymer when the quantity
νc is constant. This is attributed to the change in the supermolecular (cluster) structure of the network polymer in the
process of physical aging, namely, to the increase in the degree of local order [5]. The latter effect has quantitatively
been described within the framework of the cluster model of the structure of an amorphous polymeric state [6, 7]. In
turn, the degree of local order determines the value of the fractal dimension df of the supermolecular polymeric struc-
ture [8]. Thus, it becomes possible to predict, from the level of chemical cross-linking, the structural characteristics
(consequently, the properties) of network polymers in the glassy state, to the gelation point. One possible variant of
solution of the problem indicated will be considered below with the example of the typical representatives of the class
of network polymers — epoxy polymers of amine and anhydride cross-linking.

We have employed epoxy polymers (EPs) produced by hardening of epoxydian oligomer E′D-22 by 3,3′-di-
chloro-4,4′-diaminodiphenylmethane (EP-1) and isomethyltetrahydrophthalic anhydride (EP-2) with a varied hard-
ener:oligomer proportion in moles (equivalents) Kst. A variation of 0.50 to 1.50 in Kst enabled us to vary the quantity
νcr within (2–17)⋅1026 m−3. The samples were produced both at atmospheric pressure (EP-1 and EP-2) and under the
conditions of unilateral compression at a pressure of 200 MPa (EP-1-200 and EP-2-200). The details of manufacture
of the samples have been presented in [9]. The value of νcr was calculated from the results of thermomechanical tests
of epoxy polymers [10]. The samples of the epoxy polymers were tested for uniaxial compression at a temperature of
293 K and a deformation rate of D5.6⋅10−3 sec−1. The value of the Poisson coefficient µ was evaluated using the re-
lation [11]

σy

E
 = 

1 − 2µ
6 (1 + µ)

 . (1)

The fractal dimension df of the epoxy-polymer structure has been calculated as follows [12]:

df = (d − 1) (1 + µ) . (2)
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To derive the relation between νcr and df of the epoxy polymers under study we have employed the model
(proposed in [13]) whose essence is as follows. The competitive processes of nucleation and growth of a crystal were
described within the framework of two kinetic equations:

dR
dt

 = k1c
m

 , (3)

dR
dt

 = k2c
ρ
 . (4)

The employment of (3) and (4) for description of the nucleation and growth of the regions of local order
(clusters) in epoxy polymers is based on the fact that clusters are in their physical essence an analog of crystallites
with extended chains [6, 7]. The characteristic dimension of a cluster is taken to be equal to the length of the seg-
ments involved, i.e., to the statistical-segment length lst, which in turn is evaluated as [14, 15]

lst = l0C∞ . (5)

Just as in [13], we have m = 1, since the growth of a cluster represents the addition of a single segment of
length lst [6], and ρ > 1, since the nucleation of a cluster requires that two or more segments be present at the nuclea-
tion site. However the application of Eq. (3) to a single epoxy taken separately necessitates serious modification. If we
take R = lst, Eq. (3) will, apparently, lose its meaning since lst = const and dR/dt = 0 for each epoxy polymer under
study, which implies the impossibility of cluster growth. Then Eq. (3) will be written in the form

dncl

dt
 = k1c . (6)

The limiting value of ncl is limited by the nucleation of new clusters of thermofluctuation origin [13]; therefore, we
have

lst = 
dncl

 ⁄ dt

dN ⁄ dt
 . (7)

It is apparent that the fraction of macromolecular segments C capable of forming clusters must decrease with
time, as the clusters are being formed, and the quantity ncl must also decrease, with allowance for the condition lst =
const for each epoxy polymer. This explains the presence of unstable clusters which have lower values of ncl in the
structure of the amorphous state of the polymers [8, 9, 16]. This also explains the self-similarity of the cluster struc-
ture in the interval of scales of its existence. We note once again an important fact — the system of Eqs. (3) and (4)
is applicable to the set of all the epoxy polymers under study, whereas system (4) and (6) is applicable to each of
these polymers taken separately.

For the set of epoxy polymers under study we can write the following relations [13]:

N (lst) = 




dNcl
dt




 tgel , (8)

lst D 
dlst

 ⁄ dt

dNcl
 ⁄ dt

 . (9)

Equation (9) predicts that, as the cross-link density νcr increases, C∞ and consequently lst decrease. This leads
to an intensification of the nucleation of new clusters, i.e., to a growth of Ncl.

Setting R = lst and m = 1 and dividing Eq. (3) by (4), we obtain
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lst D 
dlst

 ⁄ dt

dNcl
 ⁄ dt

 D 
c

c
ρ

 = c
1−ρ

 , (10)

since k1 and k2 are constants.
Equation (8) in combination with (4) on condition that tgel = const, k2 = const, and N = Ncl yields that

Ncl (lst) = k2tgelc
ρ
 , (11)

or, since k2tgel = const:

Ncl (lst) D c
ρ
 . (12)

Equations (2) and (4) enable us to determine c as

c D lst
−1 ⁄ (ρ−1)

 , (13)

or

c D Ncl
1 ⁄ ρ . (14)

Equating the right-hand sides of (13) and (14), we obtain

Ncl
1 ⁄ ρ D lst

−1 ⁄ (ρ−1) (15)

or

Ncl (lst) D lst
−ρ ⁄ (ρ−1)

 . (16)

It has been indicated in [13] that the classical theory of nucleation requires that ρ be less than 2, which re-
sults in the condition

ρ
ρ − 1

 ≥ 2 . (17)

Furthermore, there is another constraint — the volume of the clusters must not exceed the total volume of the poly-
mer, which yields another condition:

ρ
ρ − 1

 ≤ 3 . (18)

Thus, the index in relation (9) has the same limits as the fractal dimension of an object in a three-dimensional space
[17]. We can obtain the exact interrelation of ρ/(ρ − 1) and df by comparing (9) to that obtained in [8]:

Ncl (lst) D lst
−df . (19)

As is well known, the quantity Ncl can be written as follows [7]:

Ncl = 
Vlink

ncl
 = 

2Vlink

F
 . (20)

Since a cluster is an analog of a crystallite with an extended chain, we have [7]
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F = 2ncl . (21)

Noteworthy is another important fact. A comparison of Eqs. (4) and (19) shows that the maximum rate of for-
mation of clusters is attained for ρ = 2 or df = 2. To put it differently, the maximum level of local order is assumed
to correspond to the minimum fractal dimension of the polymer structure.

Within the framework of the cluster model [6, 7], a network polymer can be considered as a superposition of
two skeletons — a network of chemical-cross-link sites and a cluster network of physical linkages with densities νcr
and Vlink respectively. Setting each of these skeletons perfect (i.e., disregarding the effect of end chains), we can write
[18]

Mcr
ef

 = 
Mcrf

2
 , (22)

Mlink
ef

 = 
MlinkF

2
 . (23)

With account for (20), (22), and (23), relation (19) will have the form

2νcr

f
 D lst

−df . (24)

We have obtained in [19] an expression relating the parameters C∞ and df:

C∞ = 




df

3 (3 − df)
 + 

4

3



 . (25)

A combination of (24) and (25) enables us to obtain the following equation:

l0
df 





df

3 (3 − df)
 + 

4

3




df

 = 3.75⋅10
28

 
f

νcr
 , (26)

where the empirical numerical coefficient on the right-hand side of the equation has been obtained by equating the
df values calculated from (2) and (26) for νcr = 1027 m−3.

Fig. 1. Fractal dimension df of the epoxy-polymer structure vs. cross-link den-
sity νcr: 1) EP-1; 2) EP-2; 3) EP-1-200; 4) EP-2-200; 5) for all the epoxy
polymers [1–4) calculated from Eq. (2); 5) calculation from (17)]. νcr⋅10−26,
m−3.
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The values of df (calculated from Eqs. (2) and (26)) as a function of νcr for the epoxy polymers under study
are compared in Fig. 1 (on condition that l0 = 1.25 A°  [8] and f = 4), from which it is clear that a good agreement
of the two sets of fractal dimensions has been obtained. This means that the increase in the fractal dimension of the
skeleton to the gelation point [3] leads to a decrease in the fractal dimension df of the supermolecular structure of a
network polymer in the glassy state. We note that knowledge of the value of df enables one to predict the properties
of an epoxy polymer [20]. Thus, varying Kst or arresting the reaction at a certain stage, one can produce polymers
with desired properties. However, the employment of the stoichiometric value Kst = 1.0 is more preferable from the
practical viewpoint, which gives the most stable systems [12], including network polymers [21]. In this case, variation
of the properties of the final product can be attained by changing the functionality of the cross-linking agent f or the
molecular characteristics of the epoxy oligomer.

Thus, the use of a fractal analysis enables us to obtain the interrelation of the characteristics of a network
polymer to the gelation point (or at this point) and in the glassy state. We note that this is true only of a freshly pro-
duced polymer. Subsequently the quantity df will change because of the process of physical aging, which is inevitable
by virtue of the thermodynamically nonequilibrium nature of glassy polymeric state. Nonetheless, the methodology pro-
posed enables us to predict the properties of glassy network polymers even in the stage of the reaction of cross-link-
ing. Furthermore, the model considered quantitatively predicts the effects assumed earlier, namely: the existence of
unstable clusters [9, 16], the self-similarity of the cluster structure [21], and a decrease in df, as the degree of local
order increases [21].

NOTATION

E, elastic modulus; d, dimension of the enveloping Euclidean nested space, in the present case it is equal to
three; R, crystal size; t, running time; k1 and k2, equilibrium constants; Kst, stoichiometric quantity; N, number of crys-
tals; c, molecular concentration on the surface; m and ρ, indices; l0, length of the skeleton bond in the main macro-
molecular chain; lst, length of the statistical segment; C∞, characteristic ratio that is the index of statistical rigidity of
the chain; ncl, number of segments in one cluster; tgel, time interval of gelation; Mcr

ef and Mlink
ef , effective molecular

masses of the portions of chains between chemical-cross-link sites and clusters; Mcr and Mlink, calculated values of the
indicated molecular masses; f and F, functionalities of a chemical-cross- link site and a cluster respectively; Vlink, den-
sity of the cluster network of molecular linkages which is equal as a first approximation to the number of segments
in clusters per unit volume; µ, Poisson coefficient; νef, cross-link density; σy, yield strength. Subscripts and super-
scripts: f, fractal; cl, cluster; gel, gelation; ef, effective; cr, cross-link; link, linkage; y, yield; st, statistical.
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